Kinetische Energie von beschleunigten Elektronen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Elektron besitzt zu Beginn eine Geschwindigkeit von v_ .emeterpersecond. Es wird anschliess durch eine elektrische Spannung von U volt beschleunigt. enumerate item Berechne die anfängliche kinetische Energie des Elektrons in Elektronenvolt sielectronvolt. item Wie gross ist die gesamte kinetische Energie nach der Beschleunigung in sielectronvolt? item Berechne die Endgeschwindigkeit v des Elektrons nach der Beschleunigung. Hinweis: Relativistische Effekte können vernachlässigt werden. enumerate
Solution:
Gegeben: * m .kilogram e .coulomb v_ .emeterpersecond U volt * enumerate item Anfangskinetische Energie E_textkin in eV E_textkin frac m v_^ frac . . ^^ .joule damit erhalten wir in eV: E_textkin frac.joule.jouleperelectronvolt approx .electronvolt item Gesamte kinetische Energie nach der Beschleunigung E_textkinges E_textkin + Delta E_textkin approx .electronvolt + electronvolt apx .electronvolt item Endgeschwindigkeit v. Gesamte kinetische Energie in Joule: E_textkinges .electronvolt .coulomb .joule damit ist die Geschwindigkeit: v sqrtfracE_textkingesm sqrtfrac ..kg approx .emeterpersecond enumerate
Ein Elektron besitzt zu Beginn eine Geschwindigkeit von v_ .emeterpersecond. Es wird anschliess durch eine elektrische Spannung von U volt beschleunigt. enumerate item Berechne die anfängliche kinetische Energie des Elektrons in Elektronenvolt sielectronvolt. item Wie gross ist die gesamte kinetische Energie nach der Beschleunigung in sielectronvolt? item Berechne die Endgeschwindigkeit v des Elektrons nach der Beschleunigung. Hinweis: Relativistische Effekte können vernachlässigt werden. enumerate
Solution:
Gegeben: * m .kilogram e .coulomb v_ .emeterpersecond U volt * enumerate item Anfangskinetische Energie E_textkin in eV E_textkin frac m v_^ frac . . ^^ .joule damit erhalten wir in eV: E_textkin frac.joule.jouleperelectronvolt approx .electronvolt item Gesamte kinetische Energie nach der Beschleunigung E_textkinges E_textkin + Delta E_textkin approx .electronvolt + electronvolt apx .electronvolt item Endgeschwindigkeit v. Gesamte kinetische Energie in Joule: E_textkinges .electronvolt .coulomb .joule damit ist die Geschwindigkeit: v sqrtfracE_textkingesm sqrtfrac ..kg approx .emeterpersecond enumerate
Meta Information
Exercise:
Ein Elektron besitzt zu Beginn eine Geschwindigkeit von v_ .emeterpersecond. Es wird anschliess durch eine elektrische Spannung von U volt beschleunigt. enumerate item Berechne die anfängliche kinetische Energie des Elektrons in Elektronenvolt sielectronvolt. item Wie gross ist die gesamte kinetische Energie nach der Beschleunigung in sielectronvolt? item Berechne die Endgeschwindigkeit v des Elektrons nach der Beschleunigung. Hinweis: Relativistische Effekte können vernachlässigt werden. enumerate
Solution:
Gegeben: * m .kilogram e .coulomb v_ .emeterpersecond U volt * enumerate item Anfangskinetische Energie E_textkin in eV E_textkin frac m v_^ frac . . ^^ .joule damit erhalten wir in eV: E_textkin frac.joule.jouleperelectronvolt approx .electronvolt item Gesamte kinetische Energie nach der Beschleunigung E_textkinges E_textkin + Delta E_textkin approx .electronvolt + electronvolt apx .electronvolt item Endgeschwindigkeit v. Gesamte kinetische Energie in Joule: E_textkinges .electronvolt .coulomb .joule damit ist die Geschwindigkeit: v sqrtfracE_textkingesm sqrtfrac ..kg approx .emeterpersecond enumerate
Ein Elektron besitzt zu Beginn eine Geschwindigkeit von v_ .emeterpersecond. Es wird anschliess durch eine elektrische Spannung von U volt beschleunigt. enumerate item Berechne die anfängliche kinetische Energie des Elektrons in Elektronenvolt sielectronvolt. item Wie gross ist die gesamte kinetische Energie nach der Beschleunigung in sielectronvolt? item Berechne die Endgeschwindigkeit v des Elektrons nach der Beschleunigung. Hinweis: Relativistische Effekte können vernachlässigt werden. enumerate
Solution:
Gegeben: * m .kilogram e .coulomb v_ .emeterpersecond U volt * enumerate item Anfangskinetische Energie E_textkin in eV E_textkin frac m v_^ frac . . ^^ .joule damit erhalten wir in eV: E_textkin frac.joule.jouleperelectronvolt approx .electronvolt item Gesamte kinetische Energie nach der Beschleunigung E_textkinges E_textkin + Delta E_textkin approx .electronvolt + electronvolt apx .electronvolt item Endgeschwindigkeit v. Gesamte kinetische Energie in Joule: E_textkinges .electronvolt .coulomb .joule damit ist die Geschwindigkeit: v sqrtfracE_textkingesm sqrtfrac ..kg approx .emeterpersecond enumerate
Contained in these collections: