Shark Fin Wave
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Using alternating exponentially increasing and decreasing signals we can model a wave that looks like a series of shark fins: vt cases V_ left - e^-t/tau right & textfor quad leq t T/ V_ lefte^-t-T//tau - e^-T/tau right & textfor quad T/ leq t T cases with periodical continuation. The figure below shows an example with tauT/. center includegraphicswidthtextwidth#image_path:shark-fin-no-fill-# center abcliste abc Derive a formal expression for the mean value. What is the value for the time constant tau where the mean value corresponds to V_mV_/? abc Derive a formal expression for the root mean square value. Calculate the ratio sscVrms/V_ for the time constant tauT/. abcliste
Solution:
abcliste abc The mean value is V_m fracT_^T vt textdt fracV_T left _^T/ left-e^-t/tauright textdt + _T/^T lefte^-t-T//tau - e^-T/tau right textdt right fracV_T left fracT - _^T e^-t/tau textdt + _^T/ e^-t'/tau textdt' - e^-T/tau fracT right where we have used the substitution t't-T/ in the last step. The two remaining egrals are identical so this can be simplified to V_m fracV_T fracT left - e^-T/tau right fracV_ left - e^-T/tau right The mean corresponds to V_/ if V_m fracV_ fracV_ left - e^-T/tau right Longrightarrow frac - e^-T/tau Longrightarrow e^-T/tau frac Longrightarrow -fracT tau lnfrac -ln Longrightarrow tau fracTln abc The root mean square is given by sscV^rms fracT _^T v^t textdt fracV_^T left _^T/ left-e^-t/tauright^ textdt + _T/^T lefte^-t-T//tau - e^-T/tau right^ textdt right fracV_^T left _^T/ left-e^-t/tauright^ textdt + _^T/ lefte^-t'/tau - e^-T/tau right^ textdt' right fracV_^T _^T/ left - e^-t/tau + e^- t/tau + e^- t/tau - e^-t/tau e^-T/tau + e^-T/tau right textdt fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright _^T/ e^-t/tau textdt + _^T/ e^-t/tau textdt right fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright left-tau e^-t/tauright_^T/ + left-fractau e^-t/tau right_^T/ right fracV_^T left fracT left+e^-T/tauright + tau left+e^-T/tauright lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right right fracV_^ left + e^-T/tau -fractauTleft-e^-t/tauright right The root mean square is thus sscVrms fracV_sqrt sqrtleft + e^-T/tau -fractauTleft-e^-t/tauright right For tauT/ we find fracsscVrmsV_ sqrtfracleft + e^- -fracleft-e^-right right sqrtfracleftfrace^ +frac right sqrtfrac+e^ e^ approx resP The figures below show the signal and the squared signal respectively. center includegraphicswidthtextwidth#image_path:shark-fin-fill-# includegraphicswidthtextwidth#image_path:shark-fin-squared-# center abcliste
Using alternating exponentially increasing and decreasing signals we can model a wave that looks like a series of shark fins: vt cases V_ left - e^-t/tau right & textfor quad leq t T/ V_ lefte^-t-T//tau - e^-T/tau right & textfor quad T/ leq t T cases with periodical continuation. The figure below shows an example with tauT/. center includegraphicswidthtextwidth#image_path:shark-fin-no-fill-# center abcliste abc Derive a formal expression for the mean value. What is the value for the time constant tau where the mean value corresponds to V_mV_/? abc Derive a formal expression for the root mean square value. Calculate the ratio sscVrms/V_ for the time constant tauT/. abcliste
Solution:
abcliste abc The mean value is V_m fracT_^T vt textdt fracV_T left _^T/ left-e^-t/tauright textdt + _T/^T lefte^-t-T//tau - e^-T/tau right textdt right fracV_T left fracT - _^T e^-t/tau textdt + _^T/ e^-t'/tau textdt' - e^-T/tau fracT right where we have used the substitution t't-T/ in the last step. The two remaining egrals are identical so this can be simplified to V_m fracV_T fracT left - e^-T/tau right fracV_ left - e^-T/tau right The mean corresponds to V_/ if V_m fracV_ fracV_ left - e^-T/tau right Longrightarrow frac - e^-T/tau Longrightarrow e^-T/tau frac Longrightarrow -fracT tau lnfrac -ln Longrightarrow tau fracTln abc The root mean square is given by sscV^rms fracT _^T v^t textdt fracV_^T left _^T/ left-e^-t/tauright^ textdt + _T/^T lefte^-t-T//tau - e^-T/tau right^ textdt right fracV_^T left _^T/ left-e^-t/tauright^ textdt + _^T/ lefte^-t'/tau - e^-T/tau right^ textdt' right fracV_^T _^T/ left - e^-t/tau + e^- t/tau + e^- t/tau - e^-t/tau e^-T/tau + e^-T/tau right textdt fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright _^T/ e^-t/tau textdt + _^T/ e^-t/tau textdt right fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright left-tau e^-t/tauright_^T/ + left-fractau e^-t/tau right_^T/ right fracV_^T left fracT left+e^-T/tauright + tau left+e^-T/tauright lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right right fracV_^ left + e^-T/tau -fractauTleft-e^-t/tauright right The root mean square is thus sscVrms fracV_sqrt sqrtleft + e^-T/tau -fractauTleft-e^-t/tauright right For tauT/ we find fracsscVrmsV_ sqrtfracleft + e^- -fracleft-e^-right right sqrtfracleftfrace^ +frac right sqrtfrac+e^ e^ approx resP The figures below show the signal and the squared signal respectively. center includegraphicswidthtextwidth#image_path:shark-fin-fill-# includegraphicswidthtextwidth#image_path:shark-fin-squared-# center abcliste
Meta Information
Exercise:
Using alternating exponentially increasing and decreasing signals we can model a wave that looks like a series of shark fins: vt cases V_ left - e^-t/tau right & textfor quad leq t T/ V_ lefte^-t-T//tau - e^-T/tau right & textfor quad T/ leq t T cases with periodical continuation. The figure below shows an example with tauT/. center includegraphicswidthtextwidth#image_path:shark-fin-no-fill-# center abcliste abc Derive a formal expression for the mean value. What is the value for the time constant tau where the mean value corresponds to V_mV_/? abc Derive a formal expression for the root mean square value. Calculate the ratio sscVrms/V_ for the time constant tauT/. abcliste
Solution:
abcliste abc The mean value is V_m fracT_^T vt textdt fracV_T left _^T/ left-e^-t/tauright textdt + _T/^T lefte^-t-T//tau - e^-T/tau right textdt right fracV_T left fracT - _^T e^-t/tau textdt + _^T/ e^-t'/tau textdt' - e^-T/tau fracT right where we have used the substitution t't-T/ in the last step. The two remaining egrals are identical so this can be simplified to V_m fracV_T fracT left - e^-T/tau right fracV_ left - e^-T/tau right The mean corresponds to V_/ if V_m fracV_ fracV_ left - e^-T/tau right Longrightarrow frac - e^-T/tau Longrightarrow e^-T/tau frac Longrightarrow -fracT tau lnfrac -ln Longrightarrow tau fracTln abc The root mean square is given by sscV^rms fracT _^T v^t textdt fracV_^T left _^T/ left-e^-t/tauright^ textdt + _T/^T lefte^-t-T//tau - e^-T/tau right^ textdt right fracV_^T left _^T/ left-e^-t/tauright^ textdt + _^T/ lefte^-t'/tau - e^-T/tau right^ textdt' right fracV_^T _^T/ left - e^-t/tau + e^- t/tau + e^- t/tau - e^-t/tau e^-T/tau + e^-T/tau right textdt fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright _^T/ e^-t/tau textdt + _^T/ e^-t/tau textdt right fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright left-tau e^-t/tauright_^T/ + left-fractau e^-t/tau right_^T/ right fracV_^T left fracT left+e^-T/tauright + tau left+e^-T/tauright lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right right fracV_^ left + e^-T/tau -fractauTleft-e^-t/tauright right The root mean square is thus sscVrms fracV_sqrt sqrtleft + e^-T/tau -fractauTleft-e^-t/tauright right For tauT/ we find fracsscVrmsV_ sqrtfracleft + e^- -fracleft-e^-right right sqrtfracleftfrace^ +frac right sqrtfrac+e^ e^ approx resP The figures below show the signal and the squared signal respectively. center includegraphicswidthtextwidth#image_path:shark-fin-fill-# includegraphicswidthtextwidth#image_path:shark-fin-squared-# center abcliste
Using alternating exponentially increasing and decreasing signals we can model a wave that looks like a series of shark fins: vt cases V_ left - e^-t/tau right & textfor quad leq t T/ V_ lefte^-t-T//tau - e^-T/tau right & textfor quad T/ leq t T cases with periodical continuation. The figure below shows an example with tauT/. center includegraphicswidthtextwidth#image_path:shark-fin-no-fill-# center abcliste abc Derive a formal expression for the mean value. What is the value for the time constant tau where the mean value corresponds to V_mV_/? abc Derive a formal expression for the root mean square value. Calculate the ratio sscVrms/V_ for the time constant tauT/. abcliste
Solution:
abcliste abc The mean value is V_m fracT_^T vt textdt fracV_T left _^T/ left-e^-t/tauright textdt + _T/^T lefte^-t-T//tau - e^-T/tau right textdt right fracV_T left fracT - _^T e^-t/tau textdt + _^T/ e^-t'/tau textdt' - e^-T/tau fracT right where we have used the substitution t't-T/ in the last step. The two remaining egrals are identical so this can be simplified to V_m fracV_T fracT left - e^-T/tau right fracV_ left - e^-T/tau right The mean corresponds to V_/ if V_m fracV_ fracV_ left - e^-T/tau right Longrightarrow frac - e^-T/tau Longrightarrow e^-T/tau frac Longrightarrow -fracT tau lnfrac -ln Longrightarrow tau fracTln abc The root mean square is given by sscV^rms fracT _^T v^t textdt fracV_^T left _^T/ left-e^-t/tauright^ textdt + _T/^T lefte^-t-T//tau - e^-T/tau right^ textdt right fracV_^T left _^T/ left-e^-t/tauright^ textdt + _^T/ lefte^-t'/tau - e^-T/tau right^ textdt' right fracV_^T _^T/ left - e^-t/tau + e^- t/tau + e^- t/tau - e^-t/tau e^-T/tau + e^-T/tau right textdt fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright _^T/ e^-t/tau textdt + _^T/ e^-t/tau textdt right fracV_^T left fracT left+e^-T/tauright - left+e^-T/tauright left-tau e^-t/tauright_^T/ + left-fractau e^-t/tau right_^T/ right fracV_^T left fracT left+e^-T/tauright + tau left+e^-T/tauright lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right - tau lefte^-T/tau - right right fracV_^T left fracT left+e^-T/tauright + tau lefte^-T/tau-right right fracV_^ left + e^-T/tau -fractauTleft-e^-t/tauright right The root mean square is thus sscVrms fracV_sqrt sqrtleft + e^-T/tau -fractauTleft-e^-t/tauright right For tauT/ we find fracsscVrmsV_ sqrtfracleft + e^- -fracleft-e^-right right sqrtfracleftfrace^ +frac right sqrtfrac+e^ e^ approx resP The figures below show the signal and the squared signal respectively. center includegraphicswidthtextwidth#image_path:shark-fin-fill-# includegraphicswidthtextwidth#image_path:shark-fin-squared-# center abcliste
Contained in these collections:
-
-
AC Circuits by by

